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Abstract— Active noise cancellation is an approach to noise
reduction in which a secondary noise source that destructively
interferes with the unwanted noise is introduced. In general, ac-
tive noise cancellation systems rely on multiple sensors to measure
the unwanted noise field and the effect of the cancellation. This
paper develops an approach that utilizes a single sensor. The
noise field is modeled as a stochastic process, and a time-adaptive
algorithm is used to adaptively estimate the parameters of the
process. Based on these parameter estimates, a canceling signal
is generated. In general, the transfer function characteristics from
the canceling source to the error sensor need to be accounted for.
If these can be accurately measured in advance and are invertible
except for the propagation delay between the source and sensor,
then the essential problem becomes one of predicting future
values of the noise field. The algorithm developed is evaluated
with both artificially generated noise and with recordings of
aircraft noise.

I. INTRODUCTION

NWANTED acoustic noise is a by-product of many
industrial processes and systems. With active noise can-
cellation (ANC), a secondary noise source is introduced to
generate an acoustic field that interferes destructively with the
unwanted noise and thereby attenuates it [2], [3], [11].
Conventional ANC systems typically utilize several sensors:
at least one to measure the noise field and a separate sensor
to measure the canceled or attenuated noise. A conventional
two-sensor ANC system consists of an input sensor, adaptive
filter, canceling source, and error sensor, as depicted in Fig. 1.
The input sensor is used to measure the unwanted noise at a
location away from the error sensor and provides the input to
the adaptive filter. In applications such as noise cancellation
in a duct for which the noise propagation is essentially
unidirectional, the input sensor is positioned upstream of the
location at which the noise is to be canceled so that its
output in effect anticipates or predicts the noise field at the
location of the error sensor. The error sensor measures the
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Fig. 1.

residual acoustic field that is used to adjust the adaptive
filter coefficients. Two-sensor systems are particularly effective
when the input sensor can anticipate the noise field at the error
sensor so that processing delay in the filter and any propagation
delay between the canceling source and the error sensor are
easily compensated for. In addition to the issues associated
with deploying multiple sensors, a common difficulty with
multiple sensor ANC systems is that there is typically some
feedback from the canceling speaker to the input microphone.
Several approaches have been proposed for dealing with this
problem either by utilizing a configuration of canceling sources
that minimizes the feedback or by taking the effect of feedback
into account in the design of the adaptive filter [3].

In this paper, we present a new ANC system utilizing only
a single sensor. As with conventional systems, a canceling
source is used to generate a second acoustic field. However,
in the system we develop, a single sensor is used to provide
an estimate of both the original noise field and the canceled
noise field.

To compensate for the propagation delay between the can-
celing speaker and the sensor, predicted values of the noise
field are used. The prediction is based on modeling the noise
field as a stochastic autoregressive process whose parameters
are adaptively estimated. Because the parameter estimation is
adaptive, the resulting ANC system can be used to cancel
stationary as well as nonstationary noise.

In a recent paper by Zangi [13], the performance of a
single sensor ANC algorithm is compared with that of the
two sensor algorithm proposed by Burgess [1]. The results in
this paper suggest that the noise attenuation levels obtained by
the single sensor algorithm are typically 10~15 dB higher than
the ones obtained by the two sensor algorithm. Note that in
the two sensor algorithm, the canceling signal is derived from
the output of the input sensor, whereas in the signal sensor
algorithm, the canceling single is derived from the output of
the error sensor. It is argued in [13] that the output of the error
sensor carries much more information about the future values

1063-6676/94$04.00 © 1994 IEEE



286 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 2, NO. 2, APRIL 1994

Cancelling Loudspeaker

(1) cft)

m(1) )

Fig. 2. Generetic single-microphone active noise cancellation system.

of the unwanted noise at the error sensor than the output of
the input sensor located away from the error sensor. This is
particularly true whenever the noise field is omnidirectional
so that the output of the input sensor can no longer anticipate
the noise at the error sensor.

Using the algorithms developed in this paper, a number of
experiments were performed, both with artificially generated
noise and with recordings of aircraft noise. With artificially
generated noise, the performance of the proposed ANC system
in a mean square sense was found to be close to that of the
system that would exploit the exact noise characteristics rather
than adaptively estimate them. Furthermore, in the case of
nonstationary noise, the proposed system is able to adapt to
the changing noise statistics.

In the context of aircraft noise, the algorithms were evalu-
ated in a simulated environment to cancel the noise generated
by a helicopter, a propeller airplane, and a jet airplane.
Assuming that the canceling speaker and the microphone were
three centimeters apart and that the transfer function between
the canceling speaker and the microphone is a pure delay, the
algorithm is able to attenuate the overall noise power by 45,
40, and 35 dB, respectively.

In Section II, we present our model for the cancellation
environment and the unwanted noise. In Section III, we derive
the ANC algorithm based on this model. Section IV discusses
the performance of the algorithm on recorded aircraft noise.

II. MODEL SPECIFICATION

A generic single-sensor ANC system is depicted in Fig. 2,
where the microphone output is m(t), and 7(t) is the input
to the canceling loudspeaker. The microphone measures the
sum of the unwanted noise 3(t) and the canceling signal c(t).
The objective is to generate r(¢) based on the measurements
of m(t) in such a way that the energy of m(¢) is minimized.

The block diagram for the single-sensor ANC system that
we propose and develop in this paper is depicted in Fig.
3. The system G(z) represents the overall transfer function
from the canceling source input r(¢) to the sensor output
m(t) and incorporates the transfer functions of the source
and the sensor together with the propagation delay between
the source and sensor. The microphone output m(t) is the
sum of the unwanted noise s(t), the canceling signal c(t),
and the measurement noise v(t). The overall strategy is based
on the observation that if G(z) is known or can be adaptively
estimated, then, since 7(t) is known exactly, an estimate of the
uncancelled noise at the sensor can be obtained by subtracting
out the component of the sensor output due to the canceling
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Fig. 3. Our single-microphone active noise cancellation system.
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Fig. 4. Block diagram of our single-microphone active noise cancellation
system.

source, i.e., we can extract z(t) = s(t) + wv(t) from the
output of the microphone m(t). The input to the canceling
loudspeaker is then generated based on z(t).

Although it is eventually important and of interest to fully

develop the algorithm by adaptively estimating G(z), we focus
in this paper on the more idealized and simpler problem in
which we only account for the propagation delay between the
source and sensor. Since this delay is the result of the source
and sensor separation, it is reasonable to assume that it is
known and constant.
" A block diagram representation for the overall system, with
G(z) = 2~M, is shown in Fig. 4. In this figure, s(t) is the
unwanted noise at the microphone and is modeled as the output
of an all-pole transfer function driven by white noise, i.e., s(t)
is modeled as an autoregressive (AR) process. v(t) represents
the measurement noise in the microphone.

Recall that the objective is to choose r(t) such that the
energy of the residual signal measured by the microphone
m(t) is minimized; furthermore, 7(¢) must be generated based
on z(r) : 7 = 1,...,t It is then easy to see that in the
system of Fig. 4, the minimizing choice for 7(¢) is given by
the following conditional expectation:

r(t) = —E{z(t + M)|2(t), 2(t — 1),...,2(8)} (1)

where z(t) = s(t) + w(t). Note that z(t) is what the
microphone would have measured, if the canceling signal was
turned off. By choosing r(t) according to (1), the output of the
microphone m(t) becomes equal to the following prediction
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€error:
m(t) = 2(t) - E{z(t)|z2(t—M), z2(t—M —1),...,2(1)}. (2)

Our approach is to estimate the parameters of the AR model
through the adaptive algorithm derived in Section III. These
parameters along with the measurements of the microphone
are then used to predict z(t). These predicted values are in
turn used to obtain the input to the canceling loudspeaker
according to (1).

Although, in this paper, we focus specifically on signal
prediction and noise cancellation, we note that the algorithms
presented here can also be used for the purpose of signal
enhancement since they generate the signal and parameter
estimates in the presence of noise. Since the algorithms are
sequential/adaptive in nature, they may be particularly useful
in the context of enhancing nonstationary signals such as
speech in the presence of nonstationary noise.

III. SINGLE SENSOR ADAPTIVE ALGORITHM
The model for the signal z(t) is

2(t) = s(t) + v(t) 3)

where
P
s(t) == ars(t — k) + u(t) @)
k=1

where u(t) and v(t) are statistically independent zero mean
white Gaussian processes with average powers of o2 and o2,
respectively.

Given signal observations up to time ¢, the minimum mean
square error (m.m.s.e.) estimate of s(t + m) is given by the
conditional expectation:

(¢ +m) = E{s(t+m)|2(1),2(2),...,2(t)}.  (5)

Note that E{z(t + M)|2(t),...,2(1)} = §(t + M) since
2(t+M) = s(t+M)+v(t+ M) and v(t+ M) is independent
of 2(1),...,2(t). This implies that (1) can be rewritten as
r(t) = —3(t + M). Hence, in the remainder of this section,
we will concentrate on adaptively calculating 3(¢t + M).

If we assume that the parameters al,ag,...,ap,aﬁ, and
o2 are precisely known, then this conditional expectation can
be computed efficiently using the Kalman filtering equations.
Toward this end, we represent (3) and (4) in state-space form
as

x(t) = ox(t — 1) + equ(t) (6)
2(t) = e7x(t) + v(t) ™
where x(t) is the (p + 1) x 1 state vector defined by

x(t) = [s(t)s(t = 1) -~ s(t — p)IT ®
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® is the (p + 1) x (p + 1) transition matrix

--(1/1 —Q9 Clp 0-
0 - --- 0

e=| % ; ©
[ o ... 0 1 0]

and e; is the (p + 1) x 1 unit vector

e;=[1 0 (I (10)

Denote by

x(t)t) = E{x(t)|2(1),...2(t)} an

the state estimate based on data to time ¢ and by

P(t|t) = E{[x(¢]t) — x(O))[R(¢]) — x()]T|=(1), ... Z(tziz)
the associated error covariance matrix.

Then, using the standard Kalman filter formulation, %( | ¢)
and P(t | ¢) can be computed sequentially in time, in two
stages, as follows:!

Propagation Equations:

x(tt — 1) = ®X(t - 1|t — 1) (13)
P(t|t — 1) = ®P(t — 1|t — 1)®T + o2eje  (14)
Updating Equations:
X(¢|t) = %(¢|t — 1) + k(t)[2(T) — eIkt — 1)] (15)
P(t|t) = [I - k(t)eT|P(¢|t — 1) (16)
where k(t) is the Kalman gain given by
k(t) ! P(tft— ei. (17

= TPt~ 1)e; + 02

The first component of %(¢ | ¢) is the estimate of s(¢) based
on data up to time ¢. To obtain the signal estimate at time
(t 4+ m) as required by (5), we use (4) together with (t|t) to
obtain the predicted values 3(¢t+1t), $(¢+2|t),...3(t+m]t),
specifically

p
ft+rlt) == ond(t+7—klt) T=1,2,...m (18)
k=1
The Kalman filtering equations require a,02, and o2. Since

these parameters are not available, they must be estimated as
well.

The signal parameters satisfy the Yule-Walker equation

2

1 oy
a 0

!'These equations can be simplified by exploiting the structure of & and eq,
as was done in [12]; however, this is not essential to our development here.

R (19
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where o is the p x 1 vector of zeros, a is the p X 1 vector
of the AR parameters

a=[a,a,... 07, 20)
and R is the (p + 1) x (p + 1) signal correlation matrix
R = E{x(t)x" (1)}, @1
where x(t) is the state vector defined in (8).
The estimate of the noise spectral level is given by
a3 = E{[2(t) - s(t)]*}. (22)
Denote by
K
6= |02 (23)
o
the vector of unknown parameters and by
(1)
6() = |2(t) @4
Lo3(t)

its estimate based on data up to time ¢.

Then, in accordance with (19), we consider generating the
estimates of the signal parameters in such a way that the
following equation is satisfied:

R(t) [a(t1+ 1)] = [&‘g(t0+ 1)]

where ﬁ(t) is the estimate of R, which is obtained by
performing the weighted averaging

25)

t

~ 1 —
R(t) = ———— Y A "x(r)xI(r (26)
(0= s 5mr AR
where
x(ExT (8) 2| % (¢]t) + P(¢]t) @7

and where %(t|t) and P(¢|t) are the estimate of the state and
its covariance, which are computed using the Kalman filtering
equations (13)—(16), where instead of 8, we use the current
estimate $(t), i.e.

Propagation Equations:

x(tt — 1) = S@)X(t — 1|t — 1)
P(t|t — 1) = d(t)P(t — 1]t — )BT (t) + o2 (t)eseT
29

(28)

Updating Equations:
X(t|t) = k(t|t — 1) + k(t) [2(t) — eTx(¢e]t = 1)] (30)
P(tt) = [I - R(t)e{]P(ﬂt ~1) an
where é(t) is the matrix defined in (9) computed at o = &(t),

and k(t) is the vector defined in (17) with o2 replaced by
a2(t).

—

Let %(¢|t) and x(¢)xT(t) be partitioned as follows:

D)
() = [ g ] "

e T () s(t)sT(t - 1)
=00 = [ H0 o ) e

To obtain a sequential procedure for updating the signal
parameter estimates, we define
1] [Qn(t) le(t)] .
Pl 1Qu® Q2] _ ) = " a—x(rixT(r)
1 v r=1 |
(33)
= x()xT(t) + AQ(t ~ 1). (34)

Using (33) and (26), we express (25) as
1 [Qu(t) le(t)“ 1 ] _ [;Z(H‘l)}
T AT [Qai(t) Qa2(t) | [a(t+1) 0
(35)

which leads to the following update equations for the signal
parameter estimates:

a(t+1) = -Qz (1)Qa(t)
FAt+1) = 1w [Qu() + Qua(Ha(D).

(36)
37

where we have used the fact that
1 1=
Zi:l AT 1=
Similarly, in accordance with (22), we generate the esti-

mate of the noise power level using the following weighted
averaging:

o2 = Kl'n— 2=: 0 TA(r) - 2(r)(rir) + (7))
= 10 (38)
where ¢(t) is computed recursively by
<() = n(s(t — 1)) + [22(t) — 22(1)3(¢]t) + 2()].  (39)

At each time step, the algorithm first estimates the current state
(signal) using the latest parameter estimates in (28)—(31) and
then updates the parameter estimates using the state estimate
just computed and its covariance in (36)—(38).

The factors A and 7 that appear in the cumulative averaging
in (33) and (38), respectively, are numbers between 0 and 1.
To maximize statistical stability, we choose A\ =1 and n = 1.
Choosing X and 7 to be strictly smaller than 1 corresponds to
exponential weighting that gives more weight to current data
samples and results in an adaptive algorithm that is capable of
tracking nonstationary changes in the structure of the data.

As an alternative to the parameter update equations
(33)~(39), we may consider a gradient-search algorithm for
solving the Yule-Walker equation (19). In this case, instead
of the signal correlation matrix R, we use its estimate given
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by (26), and we proceed sequentially through the data using
a stochastic gradient-type procedure. Replacing R in (19) by
its current estimate R(t) = 1= Q(¢), where Q(t) is defined

in (33), we obtain

(40)
41

Qo1(t) + Qa2(t)a =0
o2 - :%;[Qu(t) + Qus(t)a] = 0.

From (40) and (41) and using an approach similar to that
used in compound decision problems (e.g., see [5]-[7], [9],
[10]), the following sequential update equations for the signal
parameters are suggested:

a(t+1) = a(t) — 7[Qa1(t) + Qa2()a(t)]  (42)
Tt +1) = )~ w[o20) - T
X [Qai(t) + Qua(t)i(t)] “3)

where Q;;(¢)i,j = 1,2 are computed recursively in ¢ using
(34).
Similarly, the noise power level is updated according to

At +1) = 72(t) b, [ﬁ(t)— 1";’,<<t>] 44)

1-—

where ¢(¢) is computed recursively using (39) and where 7,
and 6, are the step sizes being used. The advantage of using
the algorithm in (42)—(44) is that it does not require matrix
inversion, in contrast to the algorithm specified by (36)—(38),
and therefore, it is computationally simpler. Although it may
be possible to analyze these algorithms and to prove conver-
gence under certain conditions, such an analysis is beyond the
scope of this paper.

IV. ALGORITHM PERFORMANCE
WITH RECORDED AIRCRAFT NOISE

The results of applying both the gradient and the nongra-
dient algorithm to three types of aircraft noise are presented
in this section. These two algorithms were used on the noise
generated by a propeller aircraft, a helicopter, and a jet aircraft.
Recordings of these three types of noise were made from a
microphone placed inside a set of headphones approximately
2 m away from each aircraft. Note that these recordings
correspond to z(t) in the system of Fig. 4.

Referring to Fig. 4, recall that the objective is to choose
7(t) so that the energy of the output of the microphone m(t)
is minimized. We see that choosing 7(¢) according to (1) makes
m(t) equal to the prediction error in predicting z(t) based on
Aty r=t-M,...,L

In our simulations, the order of the AR model for the
unwanted noise was assumed to be five, and o, was fixed at
5% of the standard deviation of z(t). The algorithms were tried
with the order of the AR model ranging from three to nine, and
it was found that the performance of the algorithm improves
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very little by increasing the order beyond five. The variance
of the microphone measurement noise o> can be estimated
in the following way. The microphone is placed in a quiet
environment with the ANC turned off so that the output of the

microphone is v(t). An estimate of o2 can then be obtained as

N
Zv:"(t).
=1

The required prediction time in our simulations is determined
by the spacing between the canceling speaker and the error mi-
crophone. In the simulations, one step prediction corresponds
to a spacing of 0.625 cm between the canceling speaker and
the error microphone and prediction time of 22.5 us. Fig. 5 is
a plot of the average noise attenuation versus the prediction
time for the nongradient algorithm. Similarly, Fig. 6 is the plot
of the average noise attenuation versus the prediction time for
the gradient algorithm. Referring to Fig. 4, the attenuation is

(45)

2=

o2
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calculated as

, E{m?(t)}

attenuation(dB) = —10log;, W

where E{z%(t)} is the average power for the original noise,

and E{m?(t)} is the average power of the residual. Recall
that the residual signal is equal to the prediction error.

It is interesting to note that the propeller noise is attenuated
most, which is consistent with the fact that it has the longest
correlation time of the three. Similarly, the jet noise is attenu-
ated least since it has the shortest correlation time of all three.
Furthermore, it is evident from these plots that the performance
of the gradient algorithm is slightly better than the nongradient
algorithm. Furthermore, gradient algorithm is then much less
computationally intensive than the nongradient algorithm.

A number of other simulations were performed by applying
the gradient and the nongradient algorithms to computer-
generated autoregressive time series. Through these simula-
tions, the performance of the two algorithms, in terms of mean
square prediction error, was found to be very close to that of an
ideal system, i.e., one that incorporates the true noise statistics.

(46)
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